A Matrix-based Method for Analysing Stochastic Process Algebras
نویسندگان
چکیده
This paper demonstrates how three stochastic process algebras can be mapped on to a generally-distributed stochastic transition system. We demonstrate an aggregation technique on these stochastic transition systems and show how this can be implemented as a matrix-analysis method for finding steady-state distributions. We verify that the time complexity of the algorithm is a considerable improvement upon a previous method and discuss how the technique can be used to generate partial steady-state distributions for SPA systems.
منابع مشابه
Wilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملComputational method based on triangular operational matrices for solving nonlinear stochastic differential equations
In this article, a new numerical method based on triangular functions for solving nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...
متن کاملAn Aggregation Technique for Analysing Some Generally Distributed Stochastic Processes
A stochastic aggregation technique is developed and used to reduce generally distributed stochastic transition systems to a soluble example. By aggregating carefully, we can derive the entire stationary distribution for the original stochastic transition system. This paper examines the possibility of constructing a solution technique for generally distributed process algebras. Further, we demon...
متن کاملA computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کامل